Anisotropic Friedel oscillations in graphene-like materials: The Dirac point approximation in wave-number dependent quantities revisited
نویسندگان
چکیده
Friedel oscillations of the graphene-like materials are investigated theoretically for low and intermediate Fermi energies. Numerical calculations have been performed within the random phase approximation. It was demonstrated that for intra-valley transitions the contribution of the different Dirac points in the wave-number dependent quantities is determined by the orientation of the wave-number in k-space. Therefore, identical contribution of the different Dirac points is not automatically guaranteed by the degeneracy of the Hamiltonian at these points. Meanwhile, it was shown that the contribution of the inter-valley transitions is always anisotropic even when the Dirac points coincide with the Fermi level (E F = 0). This means that the Dirac point approximation based studies could give the correct physics only at long wave length limit. The anisotropy of the static dielectric function reveals different contribution of the each Dirac point. Additionally, the anisotropic k-space dielectric function results in anisotropic Friedel oscillations in graphene-like materials. Increasing the Rashba interaction strength slightly modifies the Friedel oscillations in this family of materials. Anisotropy of the dielectric function in k-space is the clear manifestation of band anisotropy in the graphene-like systems.
منابع مشابه
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...
متن کاملEffect of a single impurity on the local density of states in monolayer and bilayer graphene
We use the T-matrix approximation to analyze the effect of a localized impurity on the local density of states in monoand bilayer graphene. For monolayer graphene the Friedel oscillations generated by intranodal scattering obey an inverse-square law, while the internodal ones obey an inverse law. In the Fourier transform this translates into a filled circle of high intensity in the center of th...
متن کاملTransport anomaly at the ordering transition for adatoms on graphene
Impurities in metals experience a long-range RudermanKittel-Kasuya-Yosida (RKKY) interaction due to polarization of the electron Fermi sea (Friedel oscillations).1 For surface adsorbents such an interaction may result in their structural ordering, repeating the pattern of the Friedel oscillations of electron density.2 In particular, a dilute ensemble of adatoms on graphene may undergo a partial...
متن کاملAnisotropic photoconductivity in graphene
We investigate the photoconductivity of graphene within the relaxation time approximation. In presence of the inter-band transitions induced by the linearly polarized light the photoconductivity turns out to be highly anisotropic due to the pseudospin selection rule for Dirac-like carriers. The effect can be observed in clean undoped graphene samples and be utilized for light polarization detec...
متن کاملPumping electrons in graphene to the M point in the Brillouin zone: Emergence of anisotropic plasmons
We consider the existence of plasmons in a nonequilibrium situation where electrons from the valence band of graphene are pumped to states in the Brillouin zone around the M point by a high intensity UV electromagnetic field. The resulting out-of-equilibrium electron gas is later probed by a weak electromagnetic field of different frequency. We show that the optical properties of the system and...
متن کامل